Doctorant (H/F) vulnérabilités dans codes générés par LLM (projet TAP)

Référence : UMR6074-OLIZEN-003

  • Fonction publique : Fonction publique de l'État
  • Employeur : Centre national de la recherche scientifique (CNRS)
  • Localisation : 35042 RENNES (France)

Partager la page

Veuillez pour partager sur Facebook, Twitter et LinkedIn.

  • Nature de l’emploi Emploi ouvert uniquement aux contractuels
  • Nature du contrat Non renseigné
  • Expérience souhaitée Non renseigné
  • Rémunération (fourchette indicative pour les contractuels) La rémunération mensuelle est d'un minimum de 2200 euros bruts (1769 euros nets payés) € brut/an
  • Catégorie Catégorie A (cadre)
  • Management Non renseigné
  • Télétravail possible Non renseigné

Vos missions en quelques mots

Sujet de thèse :
Depuis les 60 à 70 dernières années, la programmation a largement prévalu dans le domaine de l'informatique, englobant la capture d'intentions et la production de code. Les spécifications formelles ont gagné en importance grâce aux avancées en modélisation et conception de systèmes, ce qui permet une capture plus précise des objectifs. Malgré les progrès réalisés, les ingénieurs en logiciel hésitent à rédiger des spécifications formelles, ce qui se traduit par l'absence d'une déclaration formelle d'intention pour les grands systèmes logiciels, rendant ainsi le débogage et la correction d'erreurs difficiles. Malgré l'absence de capture d'intention, des tests et des analyses ont été utilisés pour élaborer des bases de code fiables. Lors des tests, ces travaux visent à obtenir une couverture comportementale plus étendue et utilisent des oracles de test. Les approches de fuzzing ont gagné en importance au cours de la dernière décennie. Cependant, obtenir la correction fonctionnelle du logiciel sans exigence formelle approfondie reste un objectif difficile.
Les récents progrès dans la génération automatique de code à partir de grands modèles de langage (LLMs) offrent une nouvelle perspective. Il est envisageable de programmer à partir de spécifications en langage naturel en utilisant la génération de code par LLM, ce qui suggère que l'autocodage est réalisable. Cela soulève la question de la correction et la sécurité du code généré automatiquement par les LLMs et des conditions dans lesquelles il est possible de lui faire confiance.

Le projet TAP (Trustworthy Automatic Programming), se focalise spécifiquement sur ces aspects. Les objectifs de ce projet consistent à identifier les vulnérabilités dans le code généré par LLM, à les analyser et les classifier, ainsi qu'à déterminer si certains types de vulnérabilités sont plus fréquents dans le code généré par LLM que dans le code rédigé par des humains. Les objectifs du projet comprennent également la correction automatique des vulnérabilités dans le code généré par LLM et le renforcement des LLM par rapport aux vulnérabilités dans les codes générés.

L'objectif principal de l'équipe DiverSE sur ce projet est d'effectuer les travaux de recherche permettant d'identifier les vulnérabilités dans les codes générés par les LLM. Pour atteindre cet objectif, nous mettrons en place un système capable de générer automatiquement des ensembles de données (datasets) de vulnérabilités. Cela sera réalisé en utilisant les catalogues web disponibles pour les vulnérabilités et en modélisant ces vulnérabilités de manière à les intégrer de manière transparente dans un outil de test, nous permettant ainsi d'analyser le code et les bibliothèques générés par LLM. Les langages cibles seront prioritairement C et Java, du fait de leur grande utilisation et afin de maximiser l’impact de nos travaux.

Dans ce cadre, l’équipe DiverSE (en étroite collaboration avec
Voir plus sur le site emploi.cnrs.fr...

Profil recherché

Contraintes et risques :
Le travail peut impliquer des voyages en France et à l'étranger, y compris par avion.

Niveau d'études minimum requis

  • Niveau Niveau 7 Master/diplômes équivalents
  • Spécialisation Formations générales

Langues

  • Français Seuil

Qui sommes-nous ?

Le Centre national de la recherche scientifique est un organisme public de recherche pluridisciplinaire placé sous la tutelle du ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation.

C’est l’une des plus importantes institutions publiques au monde : 33 000 femmes et hommes (dont plus de 16 000 chercheurs et plus de 16 000 ingénieurs et techniciens), en partenariat avec les universités et les grandes écoles, y font progresser les connaissances en explorant le vivant, la matière, l’Univers et le fonctionnement des sociétés humaines.

En savoir plus sur l'employeur

À propos de l'offre

  • Le Centre national de la recherche scientifique est l’une des plus importantes institutions publiques au monde : 34 000 femmes et hommes (plus de 1 000 laboratoires et 200 métiers), en partenariat avec les universités et les grandes écoles, y font progresser les connaissances en explorant le vivant, la matière, l’Univers et le fonctionnement des sociétés humaines. Depuis plus de 80 ans, y sont développées des recherches pluri et interdisciplinaires sur tout le territoire national, en Europe et à l’international. Le lien étroit que le CNRS tisse entre ses missions de recherche et le transfert vers la société fait de lui un acteur clé de l’innovation en France et dans le monde. Le partenariat qui le lie avec les entreprises est le socle de sa politique de valorisation et les start-ups issues de ses laboratoires (près de 100 chaque année) témoignent du potentiel économique de ses travaux de recherche.

  • Vacant
  • Chercheuse / Chercheur

D'autres offres pourraient vous intéresser