• TéléchargerPDF – 42.33Ko

Ingénieur de recherche - Protection du continuum cloud-edge contre les menaces à la confidentialité et

Référence : UMR5205-SARBOU-005

  • Fonction publique : Fonction publique de l'État
  • Employeur : Centre national de la recherche scientifique (CNRS)
  • Localisation : 69622 VILLEURBANNE (France)
  • TéléchargerPDF – 42.33Ko

Partager la page

Veuillez pour partager sur Facebook, Twitter et LinkedIn.

  • Nature de l’emploi Emploi ouvert uniquement aux contractuels
  • Nature du contrat Non renseigné
  • Expérience souhaitée Non renseigné
  • Rémunération (fourchette indicative pour les contractuels) A partir de 2 875 € brut mensuel € brut/an
  • Catégorie Catégorie A (cadre)
  • Management Non renseigné
  • Télétravail possible Non renseigné

Vos missions en quelques mots

Missions :
L'apprentissage fédéré (FL) est un paradigme prometteur qui gagne du terrain dans le contexte de l'apprentissage automatique préservant la confidentialité pour les systèmes informatiques de pointe [1]. Grâce à FL, plusieurs propriétaires de données appelés clients (par exemple, des organisations dans FL inter-silo) peuvent former de manière collaborative un modèle sur leurs données privées, sans avoir à envoyer leurs données brutes à des fournisseurs de services externes. FL a été rapidement adopté dans plusieurs applications florissantes telles que la santé numérique [2], qui génère le plus grand volume de données au monde [3]. L'apprentissage décentralisé (DL) va plus loin en fournissant un apprentissage fédéré sans serveur, où les données sont conservées chez les clients et aucun serveur n'est nécessaire. Ainsi, DL implique des protocoles distribués et décentralisés pour permettre aux clients de construire un modèle global [4,5,6].

Bien que DL soit une première étape vers la confidentialité en gardant les données locales pour chaque client, cela n'est pas suffisant car les paramètres du modèle partagés par DL sont vulnérables aux attaques de confidentialité [7], comme le montre une ligne de littérature récente [8]. De plus, la DL est plus vulnérable aux comportements malveillants des clients qui peuvent injecter des informations empoisonnées dans les données et les modèles, ce qui entraîne des modèles DL non robustes et peu performants. Des études récentes montrent que la robustesse et la confidentialité dans la DL peuvent entrer en compétition ; les gérer indépendamment – ​​comme c'est le cas habituellement – ​​peut avoir des effets secondaires négatifs l'un sur l'autre.

Par conséquent, il est nécessaire de mettre en place une nouvelle approche multi-objectifs pour la robustesse de la FL et la protection contre les menaces à la vie privée. Ce projet s'attaque à ce défi et a pour mission de :
(i) définir une technique de mesure de compromis entre confidentialité, robustesse et utilité, ces objectifs étant antagonistes ;
(ii) concevoir la technique proposée dans des protocoles DL ;
(iii) piloter une évaluation empirique de la technique conçue dans un système edge-cloud.

Mots-clés :
Systèmes distribués ; Informatique de pointe ; Apprentissage fédéré et décentralisé ; Confidentialité ; Robustesse ;

Références :
[1] N. Rieke, et. al. The Future of Digital Health with Federated Learning. NPJ Digital Medicine 3, 1, 2020.
[2] RBC. The Healthcare Data Explosion.
[3] R. Shokri, et al. Membership Inference Attacks Against Machine Learning Models. IEEE Symposium on Security and Privacy (S&P), May 2017.
[4] Z. Obermeyer, et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464):447-453, Oct. 2019.
[5] N. A. Tomashenko, et. al. Privacy Attacks for Automatic Speech Recognition Acoustic Models in FL. ICASSP 2022.
[6] D. Leslie, et al. Does “AI
Voir plus sur le site emploi.cnrs.fr...

Profil recherché

Competences :
- Développement logiciel (python, C).
- Expérience de travail dans un environnement de recherche est un plus.
Contraintes et risques :

Niveau d'études minimum requis

  • Niveau Niveau 7 Master/diplômes équivalents
  • Spécialisation Informatique, traitement de l'information, réseau de transmission des données

Langues

  • Français Seuil

Qui sommes-nous ?

Le Centre national de la recherche scientifique est un organisme public de recherche pluridisciplinaire placé sous la tutelle du ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation.

C’est l’une des plus importantes institutions publiques au monde : 33 000 femmes et hommes (dont plus de 16 000 chercheurs et plus de 16 000 ingénieurs et techniciens), en partenariat avec les universités et les grandes écoles, y font progresser les connaissances en explorant le vivant, la matière, l’Univers et le fonctionnement des sociétés humaines.

En savoir plus sur l'employeur

À propos de l'offre

  • Le Centre national de la recherche scientifique est l’une des plus importantes institutions publiques au monde : 34 000 femmes et hommes (plus de 1 000 laboratoires et 200 métiers), en partenariat avec les universités et les grandes écoles, y font progresser les connaissances en explorant le vivant, la matière, l’Univers et le fonctionnement des sociétés humaines. Depuis plus de 80 ans, y sont développées des recherches pluri et interdisciplinaires sur tout le territoire national, en Europe et à l’international. Le lien étroit que le CNRS tisse entre ses missions de recherche et le transfert vers la société fait de lui un acteur clé de l’innovation en France et dans le monde. Le partenariat qui le lie avec les entreprises est le socle de sa politique de valorisation et les start-ups issues de ses laboratoires (près de 100 chaque année) témoignent du potentiel économique de ses travaux de recherche.

  • Vacant
  • Responsable du système d'information « métier »

Des offres d'emplois recommandées pour vous