
Ingénieur (H/F) Reconnaissance automatique de la parole de locuteurs non natifs dans un environnement b
Référence : UMR7503-IRIILL-004
- Fonction publique : Fonction publique de l'État
- Employeur : Centre national de la recherche scientifique (CNRS)
- Localisation : 54506 VANDOEUVRE LES NANCY (France)
Partager la page
Veuillez pour partager sur Facebook, Twitter et LinkedIn.
- Nature de l’emploi Emploi ouvert uniquement aux contractuels
- Nature du contrat Non renseigné
- Expérience souhaitée Non renseigné
-
Rémunération Fourchette indicative pour les contractuels entre 2500€ et 2800€ brut par mois, ajustable selon le niveau d'expérience € brut/an Fourchette indicative pour les fonctionnaires Non renseignée
- Catégorie Catégorie A (cadre)
- Management Non renseigné
- Télétravail possible Non renseigné
Vos missions en quelques mots
Missions :
Contexte
Lorsqu'une personne a les mains occupées à effectuer une tâche comme conduire une voiture ou piloter un avion, la voix est un moyen rapide et efficace d'établir une interaction. Dans les communications aéronautiques, la langue anglaise est le plus souvent obligatoire. Malheureusement, une grande partie des pilotes ne sont pas anglophones et parlent avec un accent dépendant de leur langue maternelle et sont donc influencés par les mécanismes de prononciation de cette langue. Dans un cockpit d'avion, les prononciations non natives et les bruits environnants sont des défis difficiles à surmonter afin d'avoir une reconnaissance automatique de la parole (RAP) efficace. Les problèmes de la parole non native sont nombreux : prononciations incorrectes ou approximatives, erreurs d'accord en genre et en nombre, utilisation de mots inexistants, articles manquants, phrases grammaticalement incorrectes, etc. L'environnement acoustique ajoute une composante perturbatrice au signal de parole. Une grande partie du succès de la reconnaissance vocale repose sur la capacité à prendre en compte différents accents et bruits ambiants dans les modèles utilisés par la RAP.
La reconnaissance automatique de la parole a fait de grands progrès grâce au développement spectaculaire du deep learning. Ces dernières années, la reconnaissance vocale automatique de bout en bout, qui optimise directement la probabilité de la séquence de caractères de sortie en fonction des caractéristiques acoustiques d'entrée, a fait de grands progrès [Chan et al., 2016 ; Baevski et al., 2020 ; Gulati, et al., 2020].
Activités :
Objectifs
La personne recrutée devra développer des méthodologies et des outils afin d'obtenir une reconnaissance automatique de la parole non native performante dans le contexte aéronautique et plus spécifiquement dans un cockpit d'avion (bruyant).
Ce projet sera fondé sur un système de reconnaissance vocale automatique de bout en bout [Shi et al., 2021]
Réferences
[Baevski et al., 2020] A. Baevski, H. Zhou, A. Mohamed, and M. Auli. Wav2vec 2.0: A framework for self-supervised learning of speech representations, 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.
[Chan et al., 2016] W. Chan, N. Jaitly, Q. Le and O. Vinyals. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 4960-4964, 2016.
[Chorowski et al., 2017] J. Chorowski, N. Jaitly. Towards better decoding and language model integration in sequence to sequence models. Interspeech, 2017.
[Houlsby et al., 2019] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan, S. Gelly. Parameter-efficient transfer learning for NLP. International Conference on Machine Learning, PMLR, pp. 2790–2799, 2019.
[Gulati et al., 2020] A. Gulati, J. Qin, C.-C.
Voir plus sur le site emploi.cnrs.fr...
Profil recherché
Competences :
compétences:
- master en traitement de la parole / audio, vision par ordinateur, apprentissage automatique ou dans un domaine connexe,
- capacité à travailler aussi bien en autonomie qu'en équipe,
- solides compétences en programmation (Python, PyTorch) et connaissances approfondies en apprentissage,
- anglais écrit et parlé
Contraintes et risques :
-Les candidatures seront examinées sous réserve des exigences de la Direction générale de l'armement (DGA).
Niveau d'études minimum requis
- Niveau Niveau 6 Licence/diplômes équivalents
- Spécialisation Informatique, traitement de l'information, réseau de transmission des données
Langues
- Français Seuil
Qui sommes-nous ?
Le Centre national de la recherche scientifique est un organisme public de recherche pluridisciplinaire placé sous la tutelle du ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation.
C’est l’une des plus importantes institutions publiques au monde : 33 000 femmes et hommes (dont plus de 16 000 chercheurs et plus de 16 000 ingénieurs et techniciens), en partenariat avec les universités et les grandes écoles, y font progresser les connaissances en explorant le vivant, la matière, l’Univers et le fonctionnement des sociétés humaines.
Depuis plus de 80 ans, le CNRS développe des recherches pluri et interdisciplinaires sur tout le territoire national, en Europe et à l’international. Le lien étroit entre ses missions de recherche et le transfert vers la société fait du CNRS un acteur clé de l’innovation en France et dans le monde.
Le partenariat qui lie le CNRS avec les entreprises est le socle de sa politique de valorisation et les start-ups issues de ses laboratoires témoignent du potentiel économique de ses travaux de recherche.
À propos de l'offre
-
Le Centre national de la recherche scientifique est l’une des plus importantes institutions publiques au monde : 34 000 femmes et hommes (plus de 1 000 laboratoires et 200 métiers), en partenariat avec les universités et les grandes écoles, y font progresser les connaissances en explorant le vivant, la matière, l’Univers et le fonctionnement des sociétés humaines. Depuis plus de 80 ans, y sont développées des recherches pluri et interdisciplinaires sur tout le territoire national, en Europe et à l’international. Le lien étroit que le CNRS tisse entre ses missions de recherche et le transfert vers la société fait de lui un acteur clé de l’innovation en France et dans le monde. Le partenariat qui le lie avec les entreprises est le socle de sa politique de valorisation et les start-ups issues de ses laboratoires (près de 100 chaque année) témoignent du potentiel économique de ses travaux de recherche.
-
Vacant
-
Experte / Expert en calcul scientifique